January 10, 2019

Dr. Anna Lielpetere

Researcher

E-mail: anna_lielpetere@osi.lv

LinkedIn

Curriculum Vitae

Carrier Latvian Institute of Organic Synthesis, Riga, Latvia
Since 2023 Researcher
2016 Research Assistant
2010 Laboratory assistant

Ruhr University Bochum, Germany
2019-2023 Research Assistant
Education 2023 PhD, Riga Technical University, Faculty of Materials Science and Applied Chemistry
2019-2023 Marie Curie ITN “ImplantSens” fellow (prof. Wolfgang Schuhmann’s group), Ruhr University Bochum
08.2022 Secondment in Malmo University (Prof. Dr. Sergey Schleev), Malmo, Sweden
04.2022 Secondment in “DirectSens” company, Vienna, Austria
09.2021 Secondment in National University Ireland Galway (Prof. Dr. Donal Leech), Galway, Ireland
2016 M.Sc. Chem., Faculty of Chemistry, University of Latvia
2014 B.Sc. Chem., Faculty of Materials Science and Applied Chemistry,  Riga Technical University
Awards 2019 Poster award in Giornate dell’Elettrochimica Italiana, Padua, Italy
2015 LLC “Bapeks” Poster Award in Paul Walden 9th Symposium on Organic Chemistry, Riga, Latvia
2015 Scholarship Award Named After Gustavs Vanags

List of Publications

20. An oxygen-insensitive amperometric galactose biosensor based on galactose oxidase co-immobilized with an Os-complex modified redox polymer

Figueiredo, C.; García-Ortega, A.; Mandal, T.; Lielpetere, A.; Cervantes, F.; Demurtas, D.; Magner, E.; Plou, F. J.; Schuhmann, W.; Leech, D.; Pita, M.; De Lacey, A. L. Electrochim. Acta, 2023, 472, 143438. DOI:10.1016/j.electacta.2023.143438



19. Designing a high-potential metal-free viologen-based redox polymer for effective wiring of FAD-dependent glucose dehydrogenase

Chandra, S.; Lielpetere, A.; Schuhmann, W. Sens. Actuators, B, 2023, 397, 134660. DOI:10.1016/j.snb.2023.134660



18. Cross-Linkable Polymer-Based Multi-layers for Protecting Electrochemical Glucose Biosensors against Uric Acid, Ascorbic Acid, and Biofouling Interferences

Lielpetere, A.; Jayakumar, K.; Leech, D.; Schuhmann, W. ACS Sensors, 2023, 8, 1756–1765. DOI:10.1021/acssensors.3c00050




17. Electrochemistry of pyridine derivatives

Turovska, B.; Goba, I.; Lielpetere, A.; Glezer, V. J. Solid State Electrochem., 2023, 27, 1717–1729. DOI:10.1007/s10008-023-05425-w




16. Tethering zwitterionic polymer coatings to mediated glucose biosensor enzyme electrodes can decrease sensor foreign body response yet retain sensor sensitivity to glucose

Jayakumar, K.; Lielpetere, A.; Domingo-Lopez, D.; Levey, R.; Duffy, G.; Schuhmann, W.; Leech, D. Biosens. Bioelectron., 2023, 219, 114815. DOI:10.1016/j.bios.2022.114815

Graphical abstract: Johnson–Corey–Chaykovsky fluorocyclopropanation of double activated alkenes: scope and limitations



15. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia

He, W., Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Nat. Commun., 2022, 13, 1129. DOI:10.1038/s41467-022-28728-4




14. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing

Becker, J. M.; Lielpetere, A.;Szczesny, J.; Bichon, S.; Gounel, S.; Mano, N.; Schuhmann, W. Bioelectrochemistry, 2022, 149, 108314 DOI:10.1016/j.bioelechem.2022.108314

Graphical abstract: Johnson–Corey–Chaykovsky fluorocyclopropanation of double activated alkenes: scope and limitations



13. Bioelectrocatalytic CO2 Reduction by Redox Polymer-Wired Carbon Monoxide Dehydrogenase Gas Diffusion Electrodes

Becker, M.; Lielpetere, A.; Szczesny, J.; Junqueira, J.; Rodríguez-Maciá, P.; Birrell, J.; Conzuelo, F.; Schuhmann, W. ACS Appl. Mater. Interfaces, 2022, 14, 46421–46426. DOI:10.1021/acsami.2c09547




12. Catalytic Biosensors Operating Under Quasi-Equilibrium Conditions for Mitigating the Changes in Substrate Diffusion

Muhs, A.; Bobrowski, T.; Lielpetere, A.; Schuhmann, W. Angew. Chem. Int. Ed., 2022, 61, e202211559. DOI:10.1002/anie.202211559



11. A biophotoelectrode based on boronic acid-modified Chlorella vulgaris cells integrated within a redox polymer

Herrero-Medina, Z.; Wang, P.; Lielpetere, A.; Bashammakh, A. S.; Alyoubi, A. O.; Katakis, I.; Conzuelo, F.; Schuhmann, W. Bioelectrochemistry, 2022, 146, 108128. DOI:10.1016/j.bioelechem.2022.108128



10. On the Mediated Electron Transfer of Immobilized Galactose Oxidase for Biotechnological Applications

Zhao, F.; Brix, A. C.; Lielpetere, A.;Schuhmann, W.; Conzuelo, F. Chem. Eur. J., 2022, 28, e202200868. DOI:10.1002/chem.202200868



9. Assembling a Low-volume Biofuel Cell on a Screen-printed Electrode for Glucose Sensing

Becker, J. M.; Lielpetere, A.; Szczesny, J.; Ruff, A.; Conzuelo, F.; Schuhmann, W. Electroanalysis, 2022, 34, 1629–1637. DOI:10.1002/elan.202200084



8. Intramolecular Friedel‒Crafts alkylation by electrochemical carbenium ion generation

Lielpetere, A.; Šilaks, A.; Jirgensons, A. Chem. Heterocycl. Compd., 2022, 58, 732–736. DOI:10.1007/s10593-023-03150-w



7. Rational design of a photosystem I photoanode for the fabrication of biophotovoltaic devices

Wang, P.; Zhao, F.; Frank, A.; Zerria, S.; Lielpetere, A.; Ruff, A.; Nowaczyk, M. M.; Schuhmann, W.; Conzuelo, F. Adv. Energy Mater., 2021, 11, 2102858. DOI:10.1002/aenm.202102858




6. Enhancing the catalytic current response of H2 oxidation gas diffusion bioelectrodes using an optimized viologen-based redox polymer and [NiFe] hydrogenase

Lielpetere, A.; Becker, J. M.; Szczesny, J.; Conzuelo, F.; Ruff, A.; Birrell, J.; Lubitz, W.; Schuhmann, W. Electrochem. Sci. Adv., 2021, 2, e2100100. DOI:10.1002/elsa.202100100




5. Torii-Type Electrosynthesis of α,β-Unsaturated Esters from Furfurylated Ethylene Glycols and Amino Alcohols

Darzina, M.; Lielpetere, A.; Jirgensons, A. Eur. J. Org. Chem. 2021, 2021, 4224-4228. DOI:10.1002/ejoc.202100605




4. Friedel–Crafts Alkylation with Carbenium Ions Generated by Electrochemical Oxidation of Stannylmethyl Ethers

Lielpetere, A.;Jirgensons, A., Eur. J. Org. Chem., 2020, 2020, 4510-4516. DOI:10.1002/ejoc.202000568




3. Carbenium ion formation by fragmentation of electrochemically generated oxonium ions

Lielpetere, A.;Jirgensons, A. Org. Biomol. Chem., 2018, 16, 5094–5096. DOI:10.1039/C8OB01339J




2. Photoinduced 1,2,3,4-tetrahydropyridine ring conversions

Turovska B.; Lund. H.; Lūsis V.; Lielpētere A.; Liepiņš E.; Beljakovs S.; Goba I.; Stradiņš J. Beilstein J. Org. Chem., 2015, 11, 2166–2170. DOI:10.3762/bjoc.11.234




1. Electron Transfer Reactions in the Chemistry of Di- and Tetrahydropyridines

Turovska, B.; Goba, I.; Lielpetere, A.; Turovskis, I.; Lusis, V.; Muceniece, Dz.; Stradiņš, J. Chem. Heterocycl. Compd., 2014, 49, 1640–1652. DOI:10.1007/s10593-014-1415-5